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Disentanglingqg-Exponentials: A General Approach

C. Quesné

We revisit theg-deformed counterpart of the Zassenhaus formula, expressing the
Jacksorg-exponential of the sum of two nagrcommuting operators as an (in gen-
eral) infinite product ofg-exponential operators involving repeatgecommutators

of increasing orderEq(A + B) = Equo (A)Eqea (B) [ 172, Eqei (Ci). By systematically
transforming they-exponentials into exponentials of series and using the conventional
Baker—Campbell-Hausdorff formula, we prove that one can make any choice for the
basesg*,i =0, 1, 2,..., of the g-exponentials in the infinite product. An explicit
calculation of the operatofS; in the successive factors, carried out up to sixth order,
also shows that the simplegtZassenhaus formula is obtained tay = @3 = 1, and

az = 2, andaz = 3. This confirms and reinforces a result of Sridhar and Jagannathan,
on the basis of fourth-order calculations.

KEY WORDS: quantum groups; quantum algebrasexponential;g-Zassenhaus
formula.

1. INTRODUCTION

Disentangling the exponential of the sum of two noncommuting operators into
an (in general) infinite product of exponential operators involving repeated com-
mutators of increasing order is a problem that occurs in many fields of physics, such
as statistical mechanics, many-body theories, quantum optics, and path-integration
techniques (see, e.g., Brif, 1996; Hatano and Suzuki, 1991; Suzuki, 1977; Wilcox,
1967; Witschel, 1975; Zhao, 1991). In particular, such a procedure may be em-
ployed to provide some useful approximation methods.

The problemis solved by applying the Zassenhaus formula, which was derived
by Magnus (1954) citing unpublished work by Zassenhaus. This formulais the dual
of the Baker—Campbell-Hausdorff (BCH) formula (Baker, 1902, 1903, 1904a,b;
Campbell, 1898; Hausdorff, 1906), expressing the product of two noncommuting
exponential operators as a single exponential operator in which the exponent is, in
general, an infinite series in terms of repeated commutators.

1Physique Nudaire THeorique et Physique Magmatique, Universit'Libre de Bruxelles, Campus
de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium; e-mail: cquesne@ulb.
ac.be.
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Since their advent (Drinfeld, 1987; Faddesal,, 1988; Jimbo, 1985, 1986),
quantum groups and quantum algebras have had an ever-increasing and broader
range of applications in mathematics and physics (see, e.g., Chaichian and
Demichev, 1996; Klimyk and Schmdgen, 1997; Majid, 1995). In developing
noncommutative aspects@fanalysis, there has been a growing interest in getting
g-deformed counterparts of standard results of conventional analysis, such as the
BCH and Zassenhaus formulas.

In this respect, the simplest results are obtained for the Jackegponential
Eq4(2) (Jackson, 1904), on the basis of the use of the Heine basic numbers of base
g, [nlq = (1 —g")/(1 — q) (Heine, 1847). This function is often referred to as the
maths-typeg-exponential to distinguish it from the phys-tygeexponential for
which the symmetrig-numbersfi]q = (@" — q™")/(q — ) are employed.

A g-analogue of the BCH formula foEy(z) was derived by Katriel and
Solomon (1991). Later on, Katriedt al. (1996) proposed g-analogue of the
Zassenhaus formula, wherein #pexponential of the sum of two nogp-commut-
ing operators is expressed as an (in general) infinite produeeaponential oper-
ators involving repeateg-commutators of increasing order. Recently, Sridhar and
Jagannathan (2002) derived another form ofdkéassenhaus formula wherein,
unlike in the Katrielet al. formula, the bases of thg-exponential factors in the
infinite product are not the same. In both works, the operators in the successive
factors were determined up to fourth order in the two operators.

Such results raise two questions: Can one make any choice of bases for the
g-exponential factors in thg-Zassenhaus formula and, if so, for which choice of
bases does the formula take the simplest form? It is the purpose of this paper to
answer both of these questions.

To be able to carry out the analysis in general terms without making any
choice of bases from the very beginning, we shall adopt another procedure than
those previously employed. It is based on the repeated use of the conventional
BCH formula after expressing evegyexponential as a standard exponential of a
series (Hardy and Littlewood, 1946).

This paper is organized as follows. The conventional BCH and Zassenhaus
formulas are reviewed in Section 2. In Section 3, after recalling the definition
and main properties of the Jackspiexponential, we determine the most general
form of theg-Zassenhaus formula. In Section 4, the explicit form of the operators
in the successive factors is determined up to sixth order to make an appropri-
ate choice for the bases of tlgeexponentials. Finally, Section 5 contains the
conclusion.

2. CONVENTIONAL BCH AND ZASSENHAUS FORMULAS

In the next two sections, we shall make repeated use of the conventional BCH
formula for the product of the exponentials of two (in general) nhoncommuting
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operatorsX, Y,

exp(X) exp(Y) = exp (Z Zi) : 2.1)
i=1
whereZ; is a homogeneous polynomial of degieie X, Y (therefore said to be
of ith order) and
Zi=X+Y. (2.2)

Since for commuting operatods andY, Z; is the only nonvanishing term in the
series on the right-hand side of Eq. (2.1), it is obvious that for noncommuting
operators, the additional tern%, Z3, ..., all contain the commutatorX, Y].
Following, for instance, the method given by Wilcox (1967), one can easily find
the explicit expression of the BCH formula up to sixth order:

Zy= 21, Y]

1
Zy = (01X, VI~ IV, [X, V1)
Zy = — DX IV, DX, VI

1
Zs = = 2ol X [X X [X YT

1 1

1 1

1
+ 2oglYs 1Y, I, [X, VI

1 1

1 1

1 1

1 1
+ Tazol Ve Y DG DX DX YT + Se DX TY YL Y X YT

1 1
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The Zassenhaus formula, which we shall generalizg-éxponentials, can
be written as

(o]

exp(A + B) = exp(A) exp®) [ [ expCi) (2.4)

i=2

whereC; is a homogeneous polynomial of degrée A, B (therefore said to be of
ith order). All theC;’s contain the commutatoH, A] and, using Wilcox method
(Wilcox, 1967) again, they can be determined up to sixth order:

1
CZ = E[Bi A]

Cs = 1[B. Al B + [[B, Al A

Ca = £([B, Al B], B +[I[B, Al, Al, B + 5 {[[B, Al, Al A

Cs = 3—10([[[[ B, Al, B], B], B] +[[[[ B, Al, A], Al, B])
+ %([[[[ B, Al, Al, B], B] +[I[B, Al, Al, [B, A]])
1

1

Ce = 1—i4([[[[[ B, Al, B], B], B], B] +[[[ll B, Al, A], A], A], B])

+ 2 (U B, Al Al, B], B], 8] + [l B, A], A], A], B], 8]
+IITB, Al Al, Al [, Al) + ([ B, Al 8], B],[8, A

+[[ B, Al, Al, B], [B, All) + 7—;0[[[[[ B, Al Al Al Al Al. - (2.5)

It should be noted that the infinite series and products in this section and the
next ones should be understood as formal ones and that their region of convergence
should be studied for any specific choice of operators.



Disentanglingqg-Exponentials: A General Approach 549

3. GENERAL FORM OF THE g-ZASSENHAUS FORMULA
The Jacksomg-exponentid is defined by (Jackson, 1904)

00 Zn
Eq(2) = 3.1
q(2) n;[”]q! (3.1)
where
1-q" 2 n—1
[nlg = 1 4 =14+9+9°+---+q (3.2)
and
1 ifn=0
[n]q! (3.3)

=) nlgln = 1q...[1q ifn=12,...

It has a finite radius of convergenes], = (1 — q)~1if0 < g < 1, but converges
for all finite z if @ > 1 (Exton, 1983). It is the eigenfunction of the Jackspn
differential operator

DqEq(az) = aEq(a2) (3.4)
where
f(z2)— f
oyt 121102 o9

and it goes over to the conventional exponentiakfes 1.
In the appropriate region of definition, thheexponential can be expressed as
the exponential of a series

Eq(2) = exp (Z ck(q)zk) (3.6)
k=1
where
k-1
al(q) = %, k=1,2,3,... 3.7)

Although this formula can be traced back to Hardy and Littlewood (1946) and, as
guoted in their paper, may even have been known of other mathematicians before,
its simplicity and usefulness do not seem to have been fully appreciated in the
physical literature. For this reason, in the Appendix, we provide a proof of the
formula and derive from it some other interesting properties ofjte&ponential.

2Jackson has actually introduced two different kindsyegxponentials, related to one another by
inversion. The function considered in Eg. (3.1) is connected to one of them. It is referred to as the
Jacksorg-exponential in most works of modern physics.
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After these preliminaries, we are now in a position to generalize the Zassen-
haus formula (2.4) to thg-exponential (3.1) and to obtain the following result.

Proposition. For any choice o&;,i =0, 1, 2,...,suchthaty; € R, there exists
a representation of the g-exponential of the sum of two operatoB @s an (in
general) infinite product of the form

o0
Eq(A+ B) = Equ(A) [ | Equ (C), (3.8)
i=1
whereG = BandG,i = 2, 3,...,are some homogeneous polynomials of degree
iin A, B.
Proof: Let g, @1, a2, ..., be any set of real numbers and define the operator

G© = [Equ(A)] "Eq(A+ B)

= exp(— kXI; ck(q"‘O)Ak) exp (kX:; ck(Q)(A + B)k) , (3.9)

where in the second step we used Eqg. (3.6). The conventional BCH formula (2.1)
with X = — 302 k(@) Ak andY = 352, c(q)(A + B)X allows one to rewrite
GO as

GO — exp(Z GS”) , (3.10)
k=1

WhereG(kO), k=1,2,..., are some homogeneous polynomials of degrageA,
B, andG!” = B sincec,(q) = c1(q*°) = 1.
Let nowG® be defined by

GW = [Equ(C)] G, ;=6 =8B. (3.11)
On applying Egs. (3.6) and (2.1) aga®) can be rewritten as
cM = exp( GE’) , (3.12)
k=2
whereG(kl), k=2,3,..., are some homogeneous polynomials of degraeA,

B, and there is no first-order term due to the choice mad€foEquations (3.9)
and (3.11) together lead to the relation

Eq(A+ B) = Equo(A)Equ (C1)GY, (3.13)
whereG® is given in (3.12).
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Let us then assume that for soje R*, the relations

Eq(A+ B) = Equo(A) (]L[ Equ (Ci )) G\ (3.14)

i=1

G = exp( > G(kJ')) (3.15)

k=]+1

hold for some homogeneous polynomié]s(resp.G(kj)) of degred (resp.k) in
A, B. On setting

GU = [Egua(Ci)'GY,  Cja =G, (3.16)
and using Egs. (3.6) and (2.1), we get

GU+D = exp( > Gﬁ””) , (3.17)

k=] +2

WhereG(k”l) are some homogeneous polynomials of dedeée A, B. Hence
Egs. (3.14) and (3.15) are valid whgnis replaced byj + 1. Furthermore, as
shown in (3.12) and (3.13), they hold fgr= 1. This therefore completes their
proof by induction ovej. O

Forj — oo, we finally get the representation (3.8)Ef(A + B) as a formal
infinite product.

4. EXPLICIT FORM OF THE -ZASSENHAUS FORMULA
UP TO SIXTH ORDER

In this section, we will apply the method presented in the previous one to
determine the explicit form of the first few operat@@s We will then make a
choice for the baseg” to get the simplest formula.

To start with, since thg-deformed counterpart of the multiplicative prop-
erty of the conventional exponential reads (Cigler, 1979; Fairlie and Wu, 1997,
Schitzenberger, 1953)

Eq(A)Eq(B) = Eq(A+ B) if [B, Al;=BA—qAB=0, (4.1)

it is convenient to choos#y = a3 = 1 in EqQ. (3.8). In this way, all the operators
Ci,i =2,3,..., will contain theg-commutator B, A]q and therefore no terms
depending only oA or B.

~For j=0,1,...,n— 1 successively, we then determine the polynomials
ij), k=j+1,j+2,...,n,0fEqQ.(3.15) up to some maximal orderThis pro-
vides us with some explicit expressions @r= Gi("l), i=2,3,...,n,interms
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of A, B, and of the coefficientsc(q), ck(q*?), ..., defined in Eq. (3.7). Taking the
latter into account, th€;’s are finally reexpressed in termsafcommutators.

Let us illustrate the procedure by giving detailed results rfee 3. We
successively get

G0 =
1 1
GF = ca@B + [ ca@) + 5| B + o) ~ 5| A
1 1 1
G = ca(@)B° + | ca(@) + 020) — 1| BA+ |sa) + | BB

+ [Cs(Q) - %Cz(q) - %2} AB® + |:03(Q) +Co(q) + }} BA

6
1 17
+[osa - 3| 484+ o) - et + 5] a2
G = [c Q) + } BA+ |:Cz(q) - %] AB
G = [c @ — —} B2A+ |:C3(CI) + 2} AB+ [cg(q) - %] AB?

+ [c3(q) +c(q) + (13} BAZ + [03(q) — %] ABA

+ [03(q) —c(q) + %} A’B

G¥ =G (4.2)
from which we deduce that
C; =G = —(BA gAB) = —[B, A] (4.3)
2] Ph d
and
Cs = GY

——[ qB*A+ (1+q®)BAB— qAB?
[3lq

+ [?’]i,[BA2 —q(1+ q)ABA+ q°A?B]

[[B Alg, Blg + =B, Alg, Alge- (4.4)

" Bl [3] !
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Such expressions, which do not dependwus, .. ., coincide with those given
by Katriel et al. (1996) and by Sridhar and Jagannathan (2002).

With the help of Mathematica, we have calculated in the same way the next

terms up to sixth order. They can be written as

Co= [2]q1[4]q([[[8 Alg, Blq, Bl + [ B, Alq, Algz, Blo)
+ il 8. Al Al A]qs+m“a Alg, B, Alglzs (45)
Co— m([m B, Alg, Bql, Blgz, Blg: + [[I[ B, Alg, Algz, Alge, Bla)
+ g, (B Al Al Bl Bl + 8. Al Al [8, Alle)
; m[[[ B, Alq, Bl [B, Algle:
7l B. Ale, Al Al Al (4.6)
Co = ma[m B, Alq, Bl Blez, Bls, Bls

+[[[[[ B! A]q: A]q21 A]C]3! A]q“’ B]q)
+ m([[[[[ B! A]q: A]qzr B]qv B]qzv B]q3
+[II[ B, Alg, Algz, Alge, Bla, Blgz
+[[ B, Alg, Algz, Alg3, [B, Alqle?)

1
+[2] [6]q([[[[B Alg, Blg, Blgz, [B, Algle2
+[[[[B Alg, Algz, Bl [B, Algle?)

[6] ,[[[[[ B, Alg, Algz, Alge, Algs, Algs

qa
+ m[[[ B, Alg, [B, Alglgza, [B, Alglgz+a

qb
+ e B Al Bla. [B. Al Bl
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qb

T Blable2e

+ [[[ B! A]q: A]qzv [[ B! A]CII B]q]q“’)
qb

 22BEL6la2le

([l B, Alg, Blq, [[B, Alg, Algzlqe-»

[[[ B, Alg, Algz, [[B, Alg, Alge]gz-o, 4.7)

where we have set = a5, b = a3. It can be easily checked that for— 1, Egs.
(4.3)—(4.7) give back the conventional results given in Eq. (2.5).

From such general results, it is clear that the simplest form€fandCg
correspond to the choiee= 2, b = 3, in which case they become

1
Cy = m(m B, Alg, Bla, Blgz + [[[ B, Alg, Alz, Blo)
[4] |[[[B Alg, Algz, Algs (4.8)
1
Ce = m([[[[[ B, Alg; Blqg: B]qz- B]q3' B]q“

+[[[[[ B! A]q: A]qza A]an A]q“: B]q)

+ m([[[[[ B, Alg, Alg2, Blg, Blg2, Blge

+[II[ B, Alg, Algz, Alge, Blas Blgz
+[[[[ B! A]q: A]qzr A]C]31 [81 A]q]qz)

+ (Il B, Alq, Blg, Blez, [B, Alale:

[215[6]4
+[[[[B Alg, Algz, Blg, [B, Algle?)

[6] |[[[[[ B, Alg. Algz, Algs, Algsr Algs, (4.9)

while Cs is independent of the choice made for the bases. Equation (4.8) agrees
with Sridhar and Jagannathan (2002), who stopped at fourth order. The calculation
of the next two terms, which we have carried out in this paper, strengthens the
conjecture made by these authors according to which= 2, 3,..., should be
taken asyj =1i.

In contrast, it is clear from Eqgs. (4.5) and (4.7) that the chaice- 1,i =
2, 3,..., made by Katrieét al.(1996) leads to much more complicated expressions
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for C4 andCg, given by

1
Cs= [2]q[4]q([[[B Alg, Bla, Blez +[[[ B, Alg, Alg2, Blq)
+[4] ,[[[B Alg, Algz, Algs + 212 [4] o LB Alas [B, Alglq (4.10)
1
CG = m([[[[[ B! A]Q! B]CI! B]qz! B]q31 B]q4

+[III[ B, Alg, Algz, Alge, Alg+, Blg)
+ |:2]5[3W([[[[[ B, A]q. A]qz, B]q, B]qZ, B]q3

+[[[[ B, Alg, Algz, Algs: Blg, Bl

+ [ B, Alg, Algz, Alge, [B, Algle?)

+q[l[ B, Alq. [B, Alglg. [B, Algle

+q[l[ B, Alg, B, [[B, Alg, Algz]q?
+Q[[[ B, Alg, Al [[B, Alg Blalq?)

+ ey, B Ao Bl Bl [8. Al
+[[[[ B, Alg, Alg2, Blg. [B, Algle?)

L ,[m[ B, Ala, Alee, Al Alge, Al

+ g 1B Al Bla, 18, Al Bl
_a
[213[3]q[6]q

respectively. Equation (4.10) actually corrects their final expression, where we
have found a misprint in one of the terms.

+ [[[ B, Alg, Algz, [[B, Alq, Alge]q2, (4.11)

5. CONCLUSION

In this paper, we have revisited thedeformed counterpart of the Zassenhaus
formula that arises on replacing the conventional exponential of the sum of two
noncommuting operators andB by the Jacksog-exponential of the sum of two
non-g-commuting ones.
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We have proved that for any choig&, «; € R,i =0, 1, 2,..., of the bases
of theg-exponentials, there exists a representatioB g/ + B) as an (in general)
infinite productEqe (A)Eqe (B) [T, Eqei (Ci), whereC; are some operators of
increasing order i, B.

To reproduce the multiplicative property of thg-exponential for
g-commutative operators, we have then selectge: «; = 1. With this choice
and leaving the remaining’s arbitrary, we have finally obtained the explicit form
of the Ci’s for i =2, 3,..., 6. This has unambigously shown that= 2 and
a3z = 3 lead to the simplesg-Zassenhaus formula up to sixth order. Our work
therefore confirms and reinforces the Sridhar and Jagannathan (2002) conjecture,
derived from a study of fourth-order terms, according to which the best choice
should bey; =1i,i =2, 3,....
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APPENDIX

In this Appendix we demonstrate Egs. (3.6) and (3.7), and then use them to
obtain some interesting properties of tp@xponential.

Proving Egs. (3.6) and (3.7) amounts to finding the Taylor expansion of the
logarithm of theg-exponential

INEq(2) = Y alg)z". (A1)
k=1

In Pourahmadi (1984) (see also Sachkov, 1996), it has been shown that if the
functions f (2) = Yo paz* andh(2) = Inf(2) = Y o, &z* whereay = 1, are
analytic in some neighborhood of zero, then the Taylor coefficierti¢a)fsatisfy
the recursion relation
k—

=

=aK — jak—jCj k=2,3,... (A2)

~l =
I
a8

i

with ¢; = a;. Applying this result to the logarithm of thepexponential leads to
the relations

X
[uy

ola) = —— — ﬁ @ k=23 (a9

[Klg!
ci(q) = 1. (A4)

_M
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It is straightforward to check that the solution of Eq. (A3), satisfying condition
(A4), is provided by Eq. (3.7). Inserting such an expression in Eq. (A3) converts
the latter into the relation

k
Z['ﬁ] L—q) -1 =k k=23,... (A5)
q

=L
where
k [K]q!
| = (AB)
[ J L [ilq!lk = Jlq!
denotes g-binomial coefficient (Exton, 1983). Equation (A5) can be easily proved
by induction ovek by using the recursion relation

k i [k=1 k—1 .
[j]q:q][ j L_|_[j_1L, i=1,2,...,k—1 (A7)

We indeed obtain
k

21
[

Z[kﬂ (L— @)/ [Jlg! + (@ — @)k — 1]q!
q

=0

] (1—a) ' — 1!

q

[y

K—
kjl} 91— g)fj — 1]q!
j q

[N

J:

+

=
N —

I
]

[N

[kfl} QL q) U — gl +1
j= q

+

—1
["fl} (1— )@ —qh)j — 1]q
q

=L )

=~
= e

I
]

[N

k—1 1
T am o - e
j= q
=(k-1)+1, (A8)
where in the last step use has been made of the induction hypothesis.
Equations (3.6) and (3.7) can be applied to derive the following properties

of the g-exponential, already quoted in Ubriaco (1992) (where we have corrected
some misprints),

Eq(2)Eq(2) = 1 (A9)
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1-qg
Eq(2)Eq(~2) = Eg (mf) (A10)
n—1
Eq(nle) = [[ Er@™2, n=2,3,... (A11)
m=0
as well as a generalization of Eq. (A10),
n—1 _ A\n—-1
]_[ Eq(€”™"%) = Egn (&ZO , n=273,... (A12)
m=0 [n]q

The proof of these relations is based upon the multiplicative property of the ordinary
exponential, exp() expy) = exp + y), and on some elementary properties of
the coefficientgy(q), defined in (3.7),

6@ Y = (-1 e (q) (A13)
_(1-9)
265(q) = (m) &(@) (AL4)
[]qeGel@™) = ([nlg)¥eu(@) (A15)
_ (l_q)n_l n
NCak(@) = <T> & (@. (A16)
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